BurnMan

A thermodynamic and geophysics toolkit for the Earth and planetary sciences

Home Download Source Examples Current Documentation


BurnMan is an open source mineral physics toolbox written in Python to generate physical properties for the Earth and other planets. At its simplest, BurnMan calculates the isotropic thermoelastic moduli by solving the equations-of-state for a mixture of minerals defined by the user. The user may select from a list of minerals applicable included or easily define one of their own.

Features:

Citations:

Acknowledgement and Support:

Some studies using BurnMan:

  1. Zhang, S., Cottaar, S., Liu, T., Stackhouse, S. and Militzer, B., 2016. High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO 3: Implications for the Earth's lower mantle. Earth and Planetary Science Letters, 434, pp.264-273.
  2. Unterborn, C.T., Dismukes, E.E. and Panero, W.R., 2016. Scaling the Earth: A Sensitivity Analysis of Terrestrial Exoplanetary Interior Models. E The Astrophysical Journal, 819(1), p.32.
  3. Cottaar, S. and Deuss, A., 2016. Large‐scale mantle discontinuity topography beneath Europe: Signature of akimotoite in subducting slabs. Journal of Geophysical Research: Solid Earth, 121(1), pp.279-292.
  4. Unterborn, C.T. and Panero, W.R., 2016. Effects of Mg/Si on Exoplanetary Refractory Oxygen Budget. arXiv preprint arXiv:1604.08309.
  5. Gu, T., Li, M., McCammon, C. and Lee, K.K., 2016. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nature Geoscience, 9(9), pp.723-727.
  6. Myhill, R., Frost, D.J. and Novella, D., 2017. Hydrous melting and partitioning in and above the mantle transition zone: Insights from water-rich MgO–SiO 2–H 2 O experiments. Geochimica et Cosmochimica Acta, 200, pp.408-421.
  7. Shim, S.H., Grocholski, B., Ye, Y., Alp, E.E., Xu, S., Morgan, D., Meng, Y. and Prakapenka, V.B., 2017. Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Proceedings of the National Academy of Sciences, p.201614036.
  8. Ballmer, M.D., Houser, C., Hernlund, J.W., Wentzcovitch, R.M. and Hirose, K., 2017. Persistence of strong silica-enriched domains in the Earth/'s lower mantle. Nature Geoscience, 10(3), pp.236-240. Supplementary Information

Contact the BurnMan team at info@burnman.org with any questions or suggestions.


© 2012-2016, the BurnMan team. Contact